134 research outputs found

    Loss of the Pro-Apoptotic BH3-only Bcl-2 Family Member Bim Inhibits BCR Stimulation–induced Apoptosis and Deletion of Autoreactive B Cells

    Get PDF
    During development, the stochastic process assembling the genes encoding antigen receptors invariably generates B and T lymphocytes that can recognize self-antigens. Several mechanisms have evolved to prevent the activation of these cells and the concomitant development of autoimmune disease. One such mechanism is the induction of apoptosis in developing or mature B cells by engagement of the B cell antigen receptor (BCR) in the absence of T cell help. Here we report that B lymphocytes lacking the pro-apoptotic Bcl-2 family member Bim are refractory to apoptosis induced by BCR ligation in vitro. The loss of Bim also inhibited deletion of autoreactive B cells in vivo in two transgenic systems of B cell tolerance. Bim loss prevented deletion of autoreactive B cells induced by soluble self-antigen and promoted accumulation of self-reactive B cells developing in the presence of membrane-bound self-antigen, although their numbers were considerably lower compared with antigen-free mice. Mechanistically, we determined that BCR ligation promoted interaction of Bim with Bcl-2, inhibiting its survival function. These findings demonstrate that Bim is a critical player in BCR-mediated apoptosis and in B lymphocyte deletion

    Heterozygous mis-sense mutations in Prkcb as a critical determinant of anti-polysaccharide antibody formation

    Get PDF
    To identify rate-limiting steps in T cell-independent type 2 (TI-2) antibody production against polysaccharide antigens, we performed a genome-wide screen by immunizing several hundred pedigrees of C57BL/6 mice segregating ENU-induced mis-sense mutations. Two independent mutations, Tilcara and Untied, were isolated that semi-dominantly diminished antibody against polysaccharide but not protein antigens. Both mutations resulted from single amino acid substitutions within the kinase domain of Protein Kinase C Beta (PKCβ). In Tilcara, a Ser552>Pro mutation occurred in helix G, in close proximity to a docking site for the inhibitory N-terminal pseudosubstrate domain of the enzyme, resulting in almost complete loss of active, autophosphorylated PKCβI whereas the amount of alternatively spliced PKCβII protein was not markedly reduced. Circulating B cell subsets were normal and acute responses to BCR-stimulation such as CD25 induction and initiation of DNA synthesis were only measurably diminished in Tilcara homozygotes, whereas the fraction of cells that had divided multiple times was decreased to an intermediate degree in heterozygotes. These results, coupled with evidence of numerous mis-sense PRKCB mutations in the human genome, identify Prkcb as a genetically sensitive step likely to contribute substantially to population variability in anti-polysaccharide antibody levels

    ASCT2 (SLC1A5)-Deficient Mice Have Normal B-Cell Development, Proliferation, and Antibody Production

    Get PDF
    SLC1A5 (solute carrier family 1, member 5) is a small neutral amino acid exchanger that is upregulated in rapidly proliferating lymphocytes but also in many primary human cancers. Furthermore, cancer cell lines have been shown to require SLC1A5 for their survival in vitro. One of SLC1A5's primary substrates is the immunomodulatory amino acid glutamine, which plays an important role in multiple key processes, such as energy supply, macromolecular synthesis, nucleotide biosynthesis, redox homeostasis, and resistance against oxidative stress. These processes are also essential to immune cells, including neutrophils, macrophages, B and T lymphocytes. We show here that mice with a stop codon in Slc1a5 have reduced glutamine uptake in activated lymphocytes and primary fibroblasts. B and T cell populations and maturation in resting mice were not affected by absence of SLC1A5. Antibody production in resting and immunized mice and the germinal center response to immunization were also found to be normal. SLC1A5 has been recently described as a novel target for the treatment of a variety of cancers, and our results indicate that inhibition of SLC1A5 in cancer therapy may be tolerated well by the immune system of cancer patients.This work was supported by Australian National Health and Medical Research Council Grant 1105857 (SB) and Career Development Fellowship 1035858 (AE

    The RNA-binding protein hnRNPLL induces a T cell alternative splicing program delineated by differential intron retention in polyadenylated RNA

    No full text
    BACKGROUND Retention of a subset of introns in spliced polyadenylated mRNA is emerging as a frequent, unexplained finding from RNA deep sequencing in mammalian cells. RESULTS Here we analyze intron retention in T lymphocytes by deep sequencing polyadenylated RNA. We show a developmentally regulated RNA-binding protein, hnRNPLL, induces retention of specific introns by sequencing RNA from T cells with an inactivating Hnrpll mutation and from B lymphocytes that physiologically downregulate Hnrpll during their differentiation. In Ptprc mRNA encoding the tyrosine phosphatase CD45, hnRNPLL induces selective retention of introns flanking exons 4 to 6; these correspond to the cassette exons containing hnRNPLL binding sites that are skipped in cells with normal, but not mutant or low, hnRNPLL. We identify similar patterns of hnRNPLL-induced differential intron retention flanking alternative exons in 14 other genes, representing novel elements of the hnRNPLL-induced splicing program in T cells. Retroviral expression of a normally spliced cDNA for one of these targets, Senp2, partially corrects the survival defect of Hnrpll-mutant T cells. We find that integrating a number of computational methods to detect genes with differentially retained introns provides a strategy to enrich for alternatively spliced exons in mammalian RNA-seq data, when complemented by RNA-seq analysis of purified cells with experimentally perturbed RNA-binding proteins. CONCLUSIONS Our findings demonstrate that intron retention in mRNA is induced by specific RNA-binding proteins and suggest a biological significance for this process in marking exons that are poised for alternative splicing.This work has been supported by grants from the National Health and Medical Research Council (Australia), the Wellcome Trust, the National Institutes of Health (USA) and the Biomedical Research Council (BMRC) of the Agency for Science, Technology and Research (A*STAR), Singapore

    Mice deficient in the putative phospholipid flippase ATP11C exhibit altered erythrocyte shape, anemia, and reduced erythrocyte life span

    No full text
    Transmembrane lipid transporters are believed to establish and maintain phospholipid asymmetry in biological membranes; however, little is known about the in vivo function of the specific transporters involved. Here, we report that developing erythrocytes from mice lacking the putative phosphatidylserine flippase ATP11Cshowed a lower rate ofPStranslocation in vitro compared with erythrocytes from wild-type littermates. Furthermore, the mutant mice had an elevated percentage of phosphatidylserineexposing mature erythrocytes in the periphery. Although erythrocyte development in ATP11C-deficient mice was normal, the mature erythrocytes had an abnormal shape (stomatocytosis), and the life span of mature erythrocytes was shortened relative to that in control littermates, resulting in anemia in the mutant mice. Thus, our findings uncover an essential role for ATP11C in erythrocyte morphology and survival and provide a new candidate for the rare inherited blood disorder stomatocytosis with uncompensated anemia.This work was supported in part by National Health and Medical Research Council Grant GNT1061288. Supported by National Health and Medical Research Council Career Development Fellowship GNT1035858 and by the Ramaciotti Foundation

    Epistatic interactions between mutations of TACI (TNFRSF13B) and TCF3 result in a severe primary immunodeficiency disorder and systemic lupus erythematosus

    Get PDF
    Common variable immunodeficiency disorders (CVID) are a group of primary immunodeficiencies where monogenetic causes account for only a fraction of cases. On this evidence, CVID is potentially polygenic and epistatic although there are, as yet, no examples to support this hypothesis. We have identified a non-consanguineous family, who carry the C104R (c.310T>C) mutation of the Transmembrane Activator Calcium-modulator and cyclophilin ligand Interactor (TACI, TNFRSF13B) gene. Variants in TNFRSF13B/TACI are identified in up to 10% of CVID patients, and are associated with, but not solely causative of CVID. The proband is heterozygous for the TNFRSF13B/TACI C104R mutation and meets the Ameratunga et al. diagnostic criteria for CVID and the American College of Rheumatology criteria for systemic lupus erythematosus (SLE). Her son has type 1 diabetes, arthritis, reduced IgG levels and IgA deficiency, but has not inherited the TNFRSF13B/TACI mutation. Her brother, homozygous for the TNFRSF13B/TACI mutation, is in good health despite profound hypogammaglobulinemia and mild cytopenias. We hypothesised that a second unidentified mutation contributed to the symptomatic phenotype of the proband and her son. Whole-exome sequencing of the family revealed a de novo nonsense mutation (T168fsX191) in the Transcription Factor 3 (TCF3) gene encoding the E2A transcription factors, present only in the proband and her son. We demonstrate mutations of TNFRSF13B/TACI impair immunoglobulin isotype switching and antibody production predominantly via T-cell-independent signalling, while mutations of TCF3 impair both T-cell-dependent and -independent pathways of B-cell activation and differentiation. We conclude that epistatic interactions between mutations of the TNFRSF13B/TACI and TCF3 signalling networks lead to the severe CVID-like disorder and SLE in the proband.We thank AMRF, A+ Trust, IDFNZ, ASCIA and the Australian National Health and Medical Research Council (NHMRC, Program Grant 1054925, Project Grant 1127198 and Independent Research Institutes Infrastructure Support Scheme Grant 361646) for grant support. We also received support from Bloody Long Way (BLW) the Victorian State Government Operational Infrastructure scheme and Walter and Eliza Hall Institute (WEHI) Innovation Grant. CAS is supported by NHMRC postgraduate scholarship 1075666

    Systems-guided forward genetic screen reveals a critical role of the replication stress response protein ETAA1 in T cell clonal expansion

    Get PDF
    T-cell immunity requires extremely rapid clonal proliferation of rare, antigen-specific T lymphocytes to form effector cells. Here we identify a critical role for ETAA1 in this process by surveying random germ line mutations in mice using exome sequencing and bioinformatic annotation to prioritize mutations in genes of unknown function with potential effects on the immune system, followed by breeding to homozygosity and testing for immune system phenotypes. Effector CD8+ and CD4+ T-cell formation following immunization, lymphocytic choriomeningitis virus (LCMV) infection, or herpes simplex virus 1 (HSV1) infection was profoundly decreased despite normal immune cell development in adult mice homozygous for two different Etaa1 mutations: an exon 2 skipping allele that deletes Gly78-Leu119, and a Cys166Stop truncating allele that eliminates most of the 877-aa protein. ETAA1 deficiency decreased clonal expansion cell autonomously within the responding T cells, causing no decrease in their division rate but increasing TP53-induced mRNAs and phosphorylation of H2AX, a marker of DNA replication stress induced by the ATM and ATR kinases. Homozygous ETAA1-deficient adult mice were otherwise normal, healthy, and fertile, although slightly smaller, and homozygotes were born at lower frequency than expected, consistent with partial lethality after embryonic day 12. Taken together with recently reported evidence in human cancer cell lines that ETAA1 activates ATR kinase through an exon 2-encoded domain, these findings reveal a surprisingly specific requirement for this ATR activator in adult mice restricted to rapidly dividing effector T cells. This specific requirement may provide new ways to suppress pathological T-cell responses in transplantation or autoimmunity.This work was funded by National Institutes of Health Grant U19-AI100627; by the National Health and Medical Research Council through Program Grants 1016953 and 1113904, Australia Fellowship 585490, Senior Principal Research Fellowship 1081858, and C. J. Martin Early Career Fellowship 585518 (to I.A.P.); and by the National Collaborative Research Infrastructure Strategy

    IgD attenuates the IgM-induced anergy response in transitional and mature B cells

    Get PDF
    Self-tolerance by clonal anergy of B cells is marked by an increase in IgD and decrease in IgM antigen receptor surface expression, yet the function of IgD on anergic cells is obscure. Here we define the RNA landscape of the in vivo anergy response, comprising 220 induced sequences including a core set of 97. Failure to co-express IgD with IgM decreases overall expression of receptors for self-antigen, but paradoxically increases the core anergy response, exemplified by increased Sdc1 encoding the cell surface marker syndecan-1. IgD expressed on its own is nevertheless competent to induce calcium signalling and the core anergy mRNA response. Syndecan-1 induction correlates with reduction of surface IgM and is exaggerated without surface IgD in many transitional and mature B cells. These results show that IgD attenuates the response to self-antigen in anergic cells and promotes their accumulation. In this way, IgD minimizes tolerance-induced holes in the pre-immune antibody repertoire.This work was supported by NIH grant U19 AI100627 and NHMRC grants 585490, 1016953 and 1081858 to C.C.G., NHMRC CJ Martin Fellowship 595989 to J.H.R., an Endeavour Award from the Australian Government to Z.S. and the National Collaborative Research Infrastructure Scheme Australian Phenomics Facilit

    Deficiency of caspase recruitment domain family, member 11 (CARD11), causes profound combined immunodeficiency in human subjects.

    Get PDF
    BACKGROUND: Profound combined immunodeficiency can present with normal numbers of T and B cells, and therefore the functional defect of the cellular and humoral immune response is often not recognized until the first severe clinical manifestation. Here we report a patient of consanguineous descent presenting at 13 months of age with hypogammaglobulinemia, Pneumocystis jirovecii pneumonia, and a suggestive family history. OBJECTIVE: We sought to identify the genetic alteration in a patient with combined immunodeficiency and characterize human caspase recruitment domain family, member 11 (CARD11), deficiency. METHODS: Molecular, immunologic, and functional assays were performed. RESULTS: The immunologic characterization revealed only subtle changes in the T-cell and natural killer cell compartment, whereas B-cell differentiation, although normal in number, was distinctively blocked at the transitional stage. Genetic evaluation revealed a homozygous deletion of exon 21 in CARD11 as the underlying defect. This deletion abrogated protein expression and activation of the canonical nuclear factor κB (NF-κB) pathway in lymphocytes after antigen receptor or phorbol 12-myristate 13-acetate stimulation, whereas CD40 signaling in B cells was preserved. The abrogated activation of the canonical NF-κB pathway was associated with severely impaired upregulation of inducible T-cell costimulator, OX40, cytokine production, proliferation of T cells, and B cell-activating factor receptor expression on B cells. CONCLUSION: Thus in patients with CARD11 deficiency, the combination of impaired activation and especially upregulation of inducible T-cell costimulator on T cells, together with severely disturbed peripheral B-cell differentiation, apparently leads to a defective T-cell/B-cell cooperation and probably germinal center formation and clinically results in severe immunodeficiency. This report discloses the crucial and nonredundant role of canonical NF-κB activation and specifically CARD11 in the antigen-specific immune response in human subjects
    • …
    corecore